|
发表于 2023-5-11 11:09:23
只看该作者
6#
大佬,请教一下,如果不在板子上安装rknn_toolkit,怎样调用API接口from rknn.api import RKNN?
我打算把opencv-python版本降低到4.0.1.23或者4.3.0.36再试试
我看csdn博主运行的代码- python3 rknn_camera_416x416.py
复制代码 确实要安装rknn_toolkit,否则我这边无法调用这个接口;我原本想接入相机进行目标检测
- import numpy as np
- import cv2
- from PIL import Image
- from rknn.api import RKNN
- from timeit import default_timer as timer
- GRID0 = 13
- GRID1 = 26import numpy as np
- import cv2
- from PIL import Image
- from rknn.api import RKNN
- from timeit import default_timer as timer
- GRID0 = 13
- GRID1 = 26
- GRID2 = 52
- LISTSIZE = 85
- SPAN = 3
- NUM_CLS = 80
- MAX_BOXES = 500
- OBJ_THRESH = 0.5
- NMS_THRESH = 0.6
- CLASSES = ("person", "bicycle", "car","motorbike ","aeroplane ","bus ","train","truck ","boat","traffic light",
- "fire hydrant","stop sign ","parking meter","bench","bird","cat","dog ","horse ","sheep","cow","elephant",
- "bear","zebra ","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite",
- "baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife ",
- "spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza ","donut","cake","chair","sofa",
- "pottedplant","bed","diningtable","toilet ","tvmonitor","laptop ","mouse ","remote ","keyboard ","cell phone","microwave ",
- "oven ","toaster","sink","refrigerator ","book","clock","vase","scissors ","teddy bear ","hair drier", "toothbrush ")
- def sigmoid(x):
- return 1 / (1 + np.exp(-x))
- def process(input, mask, anchors):
- anchors = [anchors[i] for i in mask]
- grid_h, grid_w = map(int, input.shape[0:2])
- box_confidence = input[..., 4]
- obj_thresh = -np.log(1/OBJ_THRESH - 1)
- pos = np.where(box_confidence > obj_thresh)
- input = input[pos]
- box_confidence = sigmoid(input[..., 4])
- box_confidence = np.expand_dims(box_confidence, axis=-1)
- box_class_probs = sigmoid(input[..., 5:])
- box_xy = sigmoid(input[..., :2])
- box_wh = np.exp(input[..., 2:4])
- for idx, val in enumerate(pos[2]):
- box_wh[idx] = box_wh[idx] * anchors[pos[2][idx]]
- pos0 = np.array(pos[0])[:, np.newaxis]
- pos1 = np.array(pos[1])[:, np.newaxis]
- grid = np.concatenate((pos1, pos0), axis=1)
- box_xy += grid
- box_xy /= (grid_w, grid_h)
- box_wh /= (416, 416)
- box_xy -= (box_wh / 2.)
- box = np.concatenate((box_xy, box_wh), axis=-1)
- return box, box_confidence, box_class_probs
- def filter_boxes(boxes, box_confidences, box_class_probs):
- """Filter boxes with object threshold.
- # Arguments
- boxes: ndarray, boxes of objects.
- box_confidences: ndarray, confidences of objects.
- box_class_probs: ndarray, class_probs of objects.
- # Returns
- boxes: ndarray, filtered boxes.
- classes: ndarray, classes for boxes.
- scores: ndarray, scores for boxes.
- """
- box_scores = box_confidences * box_class_probs
- box_classes = np.argmax(box_scores, axis=-1)
- box_class_scores = np.max(box_scores, axis=-1)
- pos = np.where(box_class_scores >= OBJ_THRESH)
- boxes = boxes[pos]
- classes = box_classes[pos]
- scores = box_class_scores[pos]
- return boxes, classes, scores
- def nms_boxes(boxes, scores):
- """Suppress non-maximal boxes.
- # Arguments
- boxes: ndarray, boxes of objects.
- scores: ndarray, scores of objects.
- # Returns
- keep: ndarray, index of effective boxes.
- """
- x = boxes[:, 0]
- y = boxes[:, 1]
- w = boxes[:, 2]
- h = boxes[:, 3]
- areas = w * h
- order = scores.argsort()[::-1]
- keep = []
- while order.size > 0:
- i = order[0]
- keep.append(i)
- xx1 = np.maximum(x[i], x[order[1:]])
- yy1 = np.maximum(y[i], y[order[1:]])
- xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
- yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])
- w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
- h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
- inter = w1 * h1
- ovr = inter / (areas[i] + areas[order[1:]] - inter)
- inds = np.where(ovr <= NMS_THRESH)[0]
- order = order[inds + 1]
- keep = np.array(keep)
- return keep
- def yolov3_post_process(input_data):
- # # yolov3
- # masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
- # anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
- # [59, 119], [116, 90], [156, 198], [373, 326]]
- # yolov3-tiny
- masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
- anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]]
- boxes, classes, scores = [], [], []
- for input,mask in zip(input_data, masks):
- b, c, s = process(input, mask, anchors)
- b, c, s = filter_boxes(b, c, s)
- boxes.append(b)
- classes.append(c)
- scores.append(s)
- boxes = np.concatenate(boxes)
- classes = np.concatenate(classes)
- scores = np.concatenate(scores)
- # # Scale boxes back to original image shape.
- # width, height = 416, 416 #shape[1], shape[0]
- # image_dims = [width, height, width, height]
- # boxes = boxes * image_dims
- nboxes, nclasses, nscores = [], [], []
- for c in set(classes):
- inds = np.where(classes == c)
- b = boxes[inds]
- c = classes[inds]
- s = scores[inds]
- keep = nms_boxes(b, s)
- nboxes.append(b[keep])
- nclasses.append(c[keep])
- nscores.append(s[keep])
- if not nclasses and not nscores:
- return None, None, None
- boxes = np.concatenate(nboxes)
- classes = np.concatenate(nclasses)
- scores = np.concatenate(nscores)
- return boxes, classes, scores
- def draw(image, boxes, scores, classes):
- """Draw the boxes on the image.
- # Argument:
- image: original image.
- boxes: ndarray, boxes of objects.
- classes: ndarray, classes of objects.
- scores: ndarray, scores of objects.
- all_classes: all classes name.
- """
- for box, score, cl in zip(boxes, scores, classes):
- x, y, w, h = box
- print('class: {}, score: {}'.format(CLASSES[cl], score))
- print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(x, y, x+w, y+h))
- x *= image.shape[1]
- y *= image.shape[0]
- w *= image.shape[1]
- h *= image.shape[0]
- top = max(0, np.floor(x + 0.5).astype(int))
- left = max(0, np.floor(y + 0.5).astype(int))
- right = min(image.shape[1], np.floor(x + w + 0.5).astype(int))
- bottom = min(image.shape[0], np.floor(y + h + 0.5).astype(int))
- # print('class: {}, score: {}'.format(CLASSES[cl], score))
- # print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))
- cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)
- cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
- (top, left - 6),
- cv2.FONT_HERSHEY_SIMPLEX,
- 0.6, (0, 0, 255), 2)
- # print('class: {0}, score: {1:.2f}'.format(CLASSES[cl], score))
- # print('box coordinate x,y,w,h: {0}'.format(box))
- def load_model():
- rknn = RKNN()
- print('-->loading model')
- #rknn.load_rknn('./yolov3_tiny.rknn')
- rknn.load_rknn('./yolov3_416x416.rknn')
- print('loading model done')
- print('--> Init runtime environment')
- ret = rknn.init_runtime()
- if ret != 0:
- print('Init runtime environment failed')
- exit(ret)
- print('done')
- return rknn
- if __name__ == '__main__':
- rknn = load_model()
- font = cv2.FONT_HERSHEY_SIMPLEX;
- #capture = cv2.VideoCapture("data/3.mp4")
- capture = cv2.VideoCapture(0)
- accum_time = 0
- curr_fps = 0
- prev_time = timer()
- fps = "FPS: ??"
- try:
- while(True):
- ret, frame = capture.read()
- if ret == True:
- image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
- image = cv2.resize(image, (416, 416))
- testtime=timer()
- out_boxes, out_boxes2, out_boxes3 = rknn.inference(inputs=[image])
- testtime2=timer()
- print("rknn use time {}", testtime2-testtime)
- out_boxes = out_boxes.reshape(SPAN, LISTSIZE, GRID0, GRID0)
- out_boxes2 = out_boxes2.reshape(SPAN, LISTSIZE, GRID1, GRID1)
- out_boxes3 = out_boxes3.reshape(SPAN, LISTSIZE, GRID2, GRID2)
- input_data = []
- input_data.append(np.transpose(out_boxes, (2, 3, 0, 1)))
- input_data.append(np.transpose(out_boxes2, (2, 3, 0, 1)))
- input_data.append(np.transpose(out_boxes3, (2, 3, 0, 1)))
-
- testtime=timer()
- boxes, classes, scores = yolov3_post_process(input_data)
- testtime2=timer()
- print("process use time: {}", testtime2-testtime)
-
- testtime=timer()
- if boxes is not None:
- draw(frame, boxes, scores, classes)
- curr_time = timer()
- exec_time = curr_time - prev_time
- prev_time = curr_time
- accum_time += exec_time
- curr_fps += 1
- if accum_time > 1:
- accum_time -= 1
- fps = "FPS: " + str(curr_fps)
- curr_fps = 0
- cv2.putText(frame, text=fps, org=(3, 15), fontFace=cv2.FONT_HERSHEY_SIMPLEX,
- fontScale=0.50, color=(255, 0, 0), thickness=2)
- cv2.imshow("results", frame)
- c = cv2.waitKey(5) & 0xff
- if c == 27:
- cv2.destroyAllWindows()
- capture.release()
- rknn.release()
- break;
- testtime2=timer()
- print("show image use time: {}", testtime2-testtime)
- except KeyboardInterrupt:
- cv2.destroyAllWindows()
- capture.release()
- rknn.release()
- SPAN = 3
- NUM_CLS = 80
- MAX_BOXES = 500
- OBJ_THRESH = 0.5
- NMS_THRESH = 0.6
- CLASSES = ("person", "bicycle", "car","motorbike ","aeroplane ","bus ","train","truck ","boat","traffic light",
- "fire hydrant","stop sign ","parking meter","bench","bird","cat","dog ","horse ","sheep","cow","elephant",
- "bear","zebra ","giraffe","backpack","umbrella","handbag","tie","suitcase","frisbee","skis","snowboard","sports ball","kite",
- "baseball bat","baseball glove","skateboard","surfboard","tennis racket","bottle","wine glass","cup","fork","knife ",
- "spoon","bowl","banana","apple","sandwich","orange","broccoli","carrot","hot dog","pizza ","donut","cake","chair","sofa",
- "pottedplant","bed","diningtable","toilet ","tvmonitor","laptop ","mouse ","remote ","keyboard ","cell phone","microwave ",
- "oven ","toaster","sink","refrigerator ","book","clock","vase","scissors ","teddy bear ","hair drier", "toothbrush ")
- def sigmoid(x):
- return 1 / (1 + np.exp(-x))
- def process(input, mask, anchors):
- anchors = [anchors[i] for i in mask]
- grid_h, grid_w = map(int, input.shape[0:2])
- box_confidence = input[..., 4]
- obj_thresh = -np.log(1/OBJ_THRESH - 1)
- pos = np.where(box_confidence > obj_thresh)
- input = input[pos]
- box_confidence = sigmoid(input[..., 4])
- box_confidence = np.expand_dims(box_confidence, axis=-1)
- box_class_probs = sigmoid(input[..., 5:])
- box_xy = sigmoid(input[..., :2])
- box_wh = np.exp(input[..., 2:4])
- for idx, val in enumerate(pos[2]):
- box_wh[idx] = box_wh[idx] * anchors[pos[2][idx]]
- pos0 = np.array(pos[0])[:, np.newaxis]
- pos1 = np.array(pos[1])[:, np.newaxis]
- grid = np.concatenate((pos1, pos0), axis=1)
- box_xy += grid
- box_xy /= (grid_w, grid_h)
- box_wh /= (416, 416)
- box_xy -= (box_wh / 2.)
- box = np.concatenate((box_xy, box_wh), axis=-1)
- return box, box_confidence, box_class_probs
- def filter_boxes(boxes, box_confidences, box_class_probs):
- """Filter boxes with object threshold.
- # Arguments
- boxes: ndarray, boxes of objects.
- box_confidences: ndarray, confidences of objects.
- box_class_probs: ndarray, class_probs of objects.
- # Returns
- boxes: ndarray, filtered boxes.
- classes: ndarray, classes for boxes.
- scores: ndarray, scores for boxes.
- """
- box_scores = box_confidences * box_class_probs
- box_classes = np.argmax(box_scores, axis=-1)
- box_class_scores = np.max(box_scores, axis=-1)
- pos = np.where(box_class_scores >= OBJ_THRESH)
- boxes = boxes[pos]
- classes = box_classes[pos]
- scores = box_class_scores[pos]
- return boxes, classes, scores
- def nms_boxes(boxes, scores):
- """Suppress non-maximal boxes.
- # Arguments
- boxes: ndarray, boxes of objects.
- scores: ndarray, scores of objects.
- # Returns
- keep: ndarray, index of effective boxes.
- """
- x = boxes[:, 0]
- y = boxes[:, 1]
- w = boxes[:, 2]
- h = boxes[:, 3]
- areas = w * h
- order = scores.argsort()[::-1]
- keep = []
- while order.size > 0:
- i = order[0]
- keep.append(i)
- xx1 = np.maximum(x[i], x[order[1:]])
- yy1 = np.maximum(y[i], y[order[1:]])
- xx2 = np.minimum(x[i] + w[i], x[order[1:]] + w[order[1:]])
- yy2 = np.minimum(y[i] + h[i], y[order[1:]] + h[order[1:]])
- w1 = np.maximum(0.0, xx2 - xx1 + 0.00001)
- h1 = np.maximum(0.0, yy2 - yy1 + 0.00001)
- inter = w1 * h1
- ovr = inter / (areas[i] + areas[order[1:]] - inter)
- inds = np.where(ovr <= NMS_THRESH)[0]
- order = order[inds + 1]
- keep = np.array(keep)
- return keep
- def yolov3_post_process(input_data):
- # # yolov3
- # masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
- # anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45],
- # [59, 119], [116, 90], [156, 198], [373, 326]]
- # yolov3-tiny
- masks = [[6, 7, 8], [3, 4, 5], [0, 1, 2]]
- anchors = [[10, 13], [16, 30], [33, 23], [30, 61], [62, 45], [59, 119], [116, 90], [156, 198], [373, 326]]
- boxes, classes, scores = [], [], []
- for input,mask in zip(input_data, masks):
- b, c, s = process(input, mask, anchors)
- b, c, s = filter_boxes(b, c, s)
- boxes.append(b)
- classes.append(c)
- scores.append(s)
- boxes = np.concatenate(boxes)
- classes = np.concatenate(classes)
- scores = np.concatenate(scores)
- # # Scale boxes back to original image shape.
- # width, height = 416, 416 #shape[1], shape[0]
- # image_dims = [width, height, width, height]
- # boxes = boxes * image_dims
- nboxes, nclasses, nscores = [], [], []
- for c in set(classes):
- inds = np.where(classes == c)
- b = boxes[inds]
- c = classes[inds]
- s = scores[inds]
- keep = nms_boxes(b, s)
- nboxes.append(b[keep])
- nclasses.append(c[keep])
- nscores.append(s[keep])
- if not nclasses and not nscores:
- return None, None, None
- boxes = np.concatenate(nboxes)
- classes = np.concatenate(nclasses)
- scores = np.concatenate(nscores)
- return boxes, classes, scores
- def draw(image, boxes, scores, classes):
- """Draw the boxes on the image.
- # Argument:
- image: original image.
- boxes: ndarray, boxes of objects.
- classes: ndarray, classes of objects.
- scores: ndarray, scores of objects.
- all_classes: all classes name.
- """
- for box, score, cl in zip(boxes, scores, classes):
- x, y, w, h = box
- print('class: {}, score: {}'.format(CLASSES[cl], score))
- print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(x, y, x+w, y+h))
- x *= image.shape[1]
- y *= image.shape[0]
- w *= image.shape[1]
- h *= image.shape[0]
- top = max(0, np.floor(x + 0.5).astype(int))
- left = max(0, np.floor(y + 0.5).astype(int))
- right = min(image.shape[1], np.floor(x + w + 0.5).astype(int))
- bottom = min(image.shape[0], np.floor(y + h + 0.5).astype(int))
- # print('class: {}, score: {}'.format(CLASSES[cl], score))
- # print('box coordinate left,top,right,down: [{}, {}, {}, {}]'.format(top, left, right, bottom))
- cv2.rectangle(image, (top, left), (right, bottom), (255, 0, 0), 2)
- cv2.putText(image, '{0} {1:.2f}'.format(CLASSES[cl], score),
- (top, left - 6),
- cv2.FONT_HERSHEY_SIMPLEX,
- 0.6, (0, 0, 255), 2)
- # print('class: {0}, score: {1:.2f}'.format(CLASSES[cl], score))
- # print('box coordinate x,y,w,h: {0}'.format(box))
- def load_model():
- rknn = RKNN()
- print('-->loading model')
- #rknn.load_rknn('./yolov3_tiny.rknn')
- rknn.load_rknn('./yolov3_416x416.rknn')
- print('loading model done')
- print('--> Init runtime environment')
- ret = rknn.init_runtime()
- if ret != 0:
- print('Init runtime environment failed')
- exit(ret)
- print('done')
- return rknn
- if __name__ == '__main__':
- rknn = load_model()
- font = cv2.FONT_HERSHEY_SIMPLEX;
- #capture = cv2.VideoCapture("data/3.mp4")
- capture = cv2.VideoCapture(0)
- accum_time = 0
- curr_fps = 0
- prev_time = timer()
- fps = "FPS: ??"
- try:
- while(True):
- ret, frame = capture.read()
- if ret == True:
- image = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
- image = cv2.resize(image, (416, 416))
- testtime=timer()
- out_boxes, out_boxes2, out_boxes3 = rknn.inference(inputs=[image])
- testtime2=timer()
- print("rknn use time {}", testtime2-testtime)
- out_boxes = out_boxes.reshape(SPAN, LISTSIZE, GRID0, GRID0)
- out_boxes2 = out_boxes2.reshape(SPAN, LISTSIZE, GRID1, GRID1)
- out_boxes3 = out_boxes3.reshape(SPAN, LISTSIZE, GRID2, GRID2)
- input_data = []
- input_data.append(np.transpose(out_boxes, (2, 3, 0, 1)))
- input_data.append(np.transpose(out_boxes2, (2, 3, 0, 1)))
- input_data.append(np.transpose(out_boxes3, (2, 3, 0, 1)))
-
- testtime=timer()
- boxes, classes, scores = yolov3_post_process(input_data)
- testtime2=timer()
- print("process use time: {}", testtime2-testtime)
-
- testtime=timer()
- if boxes is not None:
- draw(frame, boxes, scores, classes)
- curr_time = timer()
- exec_time = curr_time - prev_time
- prev_time = curr_time
- accum_time += exec_time
- curr_fps += 1
- if accum_time > 1:
- accum_time -= 1
- fps = "FPS: " + str(curr_fps)
- curr_fps = 0
- cv2.putText(frame, text=fps, org=(3, 15), fontFace=cv2.FONT_HERSHEY_SIMPLEX,
- fontScale=0.50, color=(255, 0, 0), thickness=2)
- cv2.imshow("results", frame)
- c = cv2.waitKey(5) & 0xff
- if c == 27:
- cv2.destroyAllWindows()
- capture.release()
- rknn.release()
- break;
- testtime2=timer()
- print("show image use time: {}", testtime2-testtime)
- except KeyboardInterrupt:
- cv2.destroyAllWindows()
- capture.release()
- rknn.release()
复制代码
另外,我看快速上手文档和网页操作建议基于X86安装toolkit,但是很奇怪瑞芯微官方,也提供arm板子的toolkit安装包,而且博主居然安装成功!!!
|
|